Anthro News

Big-headed babies and manspreading

August has arrived, the summer is winding down, and those anthropologists lucky enough to be off doing fieldwork have started to come home. A new academic year will begin soon and, with it, the official resumption of the Bones, Stones, and Monkeys journal club! I’m looking forward to getting some new, interesting discussion posts going, but for now, two more pieces of anthro news.

This week’s news comes from the world of #scicomm (aka, public science communication). Science communication/outreach is definitely picking up steam as a major movement lately (though it has always been important) and some excellent #scicomm is being done by anthropologists. We’re lucky enough to study something that people always seem to find interesting – themselves!

First up, Dr. Julienne Rutherford (U. Illinois – Chicago) gave a public radio interview about how modern birth practices might affect human evolution. The overarching question this type of research is trying to answer is, essentially, how does culture interact with and shape biological evolution. Humans babies have relatively large heads compared to those of most other primate babies, which tends to make giving birth difficult. We’ve gotten around the complications of this issue culturally via C-section, but before surgical interventions were possible the size of a baby’s head was a serious selective pressure on birth canal size – too large a head could mean death for both mother and infant. With that pressure removed, Dr. Rutherford suggested that we could potentially see even more variation in female pelvis/birth canal size and somewhat bigger-headed (though not super genius) babies as a result. I’d be curious to see estimates of how long it might take for infant head size/female pelvis size and shape to decouple, given that there has been some cool previous research on how these two things are linked.

Next up, Dr. Caroline VanSickle threw down about “manspreading.” Spoiler alert – it’s a cultural phenomenon, not a biological one. Basically, an emeritus kinesiology professor suggested in an interview that manspreading is the result of sexual dimorphism (sex-related differences in appearance/shape/size) between the male and female pelvis. Specifically, the narrow pelvis of men causes their hip joints to pinch when their knees are together – an issue that is allegedly alleviated by manspreading. Dr. VanSickle shoots this down as not being a biological reality. Behavior isn’t determined by one’s skeleton, which changes during life depending on what you do with it. We call this Wolff’s Law (and I’m probably biased in my enthusiasm for her invocation for it – my entire dissertation was on Wolff’s Law and the pelvis). In addition to being able to shape your skeleton with your behavior, she also mentions research showing that manspreading does not occur in all cultures or with the same frequency between cultures. Personal bias aside, Dr. VanSickle’s case against biological determinism as an excuse for rude behavior was nicely made, so let’s all just keep our knees to ourselves on public transportation, okay?

That’s all I’ve got today from the world of anthro news! The Leakey Foundation tweeted today that they have “exciting fossil news to share tomorrow,” so stay tuned!

Disclaimer: I know Caroline (as I’ve said before, the pelvis world is small). She’s still right. 

Further Reading
Fischer, B., & Mitteroecker, P. (2015). Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma. Proceedings of the National Academy of Sciences112(18), 5655-5660.

A Plethora of Pelvis Papers

Part 1 – The Ilium

The pelvis is the coolest skeletal element. I might be slightly biased, given that I wrote my dissertation on it. But probably not – it is, objectively, the coolest.

Why is the pelvis so cool? Because it can tell us a lot about how a primate walks around and gives birth, while simultaneously being super complicated to try to figure out.

Recently, two special issues of the scientific journal The Anatomical Record were published focusing exclusively on the pelvis. It was like your gift-receiving holiday of choice for pelvis nerds like me. (And, really, there can never be a true plethora of pelvis papers; the more pelvis papers, the better!) I’m finally getting around to reading them, so I figured I’d do a short series of posts on some of the ones that particularly interested me, starting with one on the ilium.

But first, a quick primer on the pelvis:

The pelvis is made up of two innominates (hipbones) and the sacrum/coccyx (tailbone). The two hipbones are themselves made up of three bones each (the ilium, ischium, and pubis) that fuse within the socket of the hip joint (called the acetabulum, which is Latin for “little vinegar cup”) around ages 16-18.

male pelvis
A complete male pelvis (Gray 1918)

Anthropologists really dig the pelvis because ours is highly modified for walking on two feet (bipedalism), so it looks very different from the pelvis of our closest living relative, the chimpanzee.

schultz primate torsos
The trunk skeletons of a macaque, gibbon, chimpanzee, and human (left to right) (Schultz 1950).

The trend in paleoanthropology recently has been to think of our last common ancestor (LCA) with chimpanzees as being more chimp-like than human-like (though there are some who have argued against this, like the team that discovered Ardipithecus ramidus). So what might this mean for the anatomy of the pelvis of the LCA? Was it more chimp-like or more human-like, and how can we test this?

Hammond and Almecija set out to answer these questions in their contribution to the May special issue (“Lower Ilium Evolution in Apes and Hominins”). They focused on the lower ilium because it varies in length between primate species and the variation has been suggested to be related to differences in how different species move around. They used a combination of measurements, statistics, and tree-building programs to look at variation in lower ilium height within and between species, tried to reconstruct the pelvic anatomy of progressively older LCAs (including the chimp-human LCA and the LCA of all of the living apes), and then compared those reconstructions to some of the predictions that the Ardipithecus team made about the evolution of the pelvis when they published that fossil.

What they found (based on a really large sample of pelvic measurements from 58 humans, 112 great apes, 61 gibbons/siamangs, 95 Old World monkeys, 33 New World monkeys, and 8 fossils), was that the variation they saw in lower ilium height was not purely size-related, which suggests that there might be functional or evolutionary reasons behind it. They also found that gorillas have ilia that might resemble the primitive condition for all hominoids (apes + hominins) and that the chimp-human LCA probably had a shorter lower ilium than living chimpanzees, as had been suggested by the Ardipithecus team. What this means is that living chimpanzees and orangutans may have both independently evolved long lower ilia, which complicates our use of parsimony when building evolutionary trees; sometimes shared features don’t come from a common ancestor, but evolve (via similar pathways, from similar structures) in two related taxa due to similar pressures.

So what’s the take-home message? Well, a lot of people have suggested that there is a characteristic “ape-like” long lower ilium that is somehow functionally related to their locomotion, but that doesn’t seem to actually be the case. The innominate is a complicated bone and it’s not just how a primate gets around that influences it.

Also worth taking home: the pelvis is super cool and so are fossil apes.

If you dig the pelvis, stay tuned! This is the first post in what will be a short series on the pelvis. (Maybe short. Maybe not. Much like the evolutionary history of the lower ilium.)

Disclaimer: I have met/know the authors of this paper. And I’d be just as excited about it even if I didn’t because the lower ilium needs all the love it can get.

Hammond, A.S. and Almécija, S. (2017). Lower ilium evolution in apes and hominins. The Anatomical Record, 300(5), 828-844.